技術(shù)文章
Technical articles被動(dòng)式微混合器,是一種用于樣品預(yù)處理的關(guān)鍵微流控器件。常見的兩種微混合器有兩個(gè)入口呈現(xiàn)180°的T型微混合器和呈現(xiàn)任意角度(通常小于180°)的Y型微混合器。這兩類混合器結(jié)構(gòu)簡單、易于制備,但是混合時(shí)間比較長、混合效率比較低,很少單獨(dú)使用,通常同另一種微混合器一起使用。為了提高微混合器的混合效率,科研工作者嘗試進(jìn)行微混合器入口、混合腔室結(jié)構(gòu)的優(yōu)化設(shè)計(jì)研究。在混合腔室的結(jié)構(gòu)設(shè)計(jì)方面,常見的設(shè)計(jì)方案是在微通道中周期性的添加障礙物;另外,弧形微通道的引入、分流合并結(jié)構(gòu)的設(shè)計(jì)以及微通...
工業(yè)機(jī)器人已被廣泛應(yīng)用于制造和組裝,但是在微觀尺度上,大多數(shù)組裝技術(shù)只能將微模塊簡單的排列在一起,很難將其裝配在一起形成一個(gè)不易分散的實(shí)體。近日,中國科學(xué)院沈陽自動(dòng)化研究所劉連慶研究員領(lǐng)導(dǎo)的微納米機(jī)器人課題組利用激光產(chǎn)生和控制的氣泡作為微型機(jī)器人,將不同形狀和功能的微小零件裝配在一起。這些微小零件是通過PμSL3D打印技術(shù)(摩方精密,nanoArchS130)制備而成。在這項(xiàng)研究中,表面氣泡充當(dāng)芯片上的微型機(jī)器人。這些微型機(jī)器人可以移動(dòng)、固定、抬起和放下微型零件,并將它們集成...
Fig.1日本東京大學(xué)竹內(nèi)昌治教授及其研究團(tuán)隊(duì)在LabonaChip雜志上發(fā)表封面文章近年來,與細(xì)胞膜信號(hào)和物質(zhì)傳輸有關(guān)的膜蛋白(membraneproteins),受到藥物開發(fā)人員的廣泛關(guān)注。由于具有*的特異性(specificity)以及對(duì)配體分子(ligandmolecules)的敏感性,膜蛋白還有望用于各類化學(xué)傳感器。在實(shí)際操作中,膜蛋白需要雙層脂膜(lipidbilayer)作為載體。在過去,研究人員主要利用機(jī)加工或光刻等MEMS器件的加工方法,來制作具有“雙空腔結(jié)...
微芯片電化學(xué)檢測系統(tǒng)(microchip-basedelectrochemicaldetectionsystem,µEDS),是一種基于電化學(xué)方法與微流控技術(shù)的檢測平臺(tái),其具有高靈敏度、極少試劑消耗、快速檢測、可適性高、自動(dòng)化等優(yōu)點(diǎn),常用于現(xiàn)場實(shí)時(shí)應(yīng)用場景,比如床邊檢測等。此類芯片中核心組件是微電極,其檢測性能尤為關(guān)鍵。傳統(tǒng)的微電極主要是二維或平面式的結(jié)構(gòu),如環(huán)狀、帶狀、平板式。另一方面,具有三維結(jié)構(gòu)的微電極因其更大的反應(yīng)面積和優(yōu)異的檢測靈敏度已獲得越來越多研究學(xué)...
介觀尺度(10μm-1mm)的3D點(diǎn)陣結(jié)構(gòu)為新應(yīng)用領(lǐng)域提供了最佳的幾何結(jié)構(gòu),例如輕質(zhì)力學(xué)超材料、生物打印組織支架等。其周期性、多孔的內(nèi)部結(jié)構(gòu)為調(diào)諧3D點(diǎn)陣結(jié)構(gòu)對(duì)力、熱、電以及磁場的多功能響應(yīng)提供了機(jī)會(huì)。借助這種結(jié)構(gòu)優(yōu)勢,多材料3D點(diǎn)陣結(jié)構(gòu)可用于實(shí)現(xiàn)器件的多功能性。由于傳統(tǒng)微加工技術(shù)在復(fù)雜三維結(jié)構(gòu)制造方面的局限性,而3D打印技術(shù)在制備復(fù)雜三維結(jié)構(gòu)方面可較好的克服這一局限性。目前,研究人員基于擠壓成型、立體光刻(SLA)等3D打印技術(shù)制備了金屬點(diǎn)陣或者復(fù)合材料點(diǎn)陣實(shí)現(xiàn)結(jié)構(gòu)的功能化...
復(fù)雜環(huán)境下的低表面能液滴操控對(duì)于混合液相分離、化學(xué)微反應(yīng)廢物處理等能源、環(huán)境與健康領(lǐng)域的應(yīng)用發(fā)展具有重要指導(dǎo)意義。具有液體靶向運(yùn)輸控制功能的仿生結(jié)構(gòu)表面為微滴操控提供了一種能耗更低、制備工藝更簡單的解決策略。目前實(shí)現(xiàn)基底表面液滴智能運(yùn)輸主要依賴于材料潤濕性梯度和結(jié)構(gòu)的不對(duì)稱性,且相關(guān)研究均集中于水處理。油等低表面能液滴的低接觸角滯后和接觸線滑移使其相比水運(yùn)動(dòng)路徑更難控制,盡管具有親油表面的傳統(tǒng)圓錐形結(jié)構(gòu)可以實(shí)現(xiàn)微油滴的自運(yùn)輸,但復(fù)雜環(huán)境下的實(shí)用性、大容量自發(fā)連續(xù)低表面張力微液...
隨著柔性電子領(lǐng)域的快速發(fā)展和物聯(lián)網(wǎng)技術(shù)的普及,能夠用來監(jiān)測人類生理指標(biāo)(如心跳、脈搏、運(yùn)動(dòng)周期、血壓等)和機(jī)械運(yùn)行狀態(tài)(如主軸跳動(dòng)、機(jī)器人運(yùn)動(dòng)狀態(tài)感知等)信號(hào)的可穿戴電子器件逐漸應(yīng)用到社會(huì)生活中??纱┐麟娮悠骷墓残卧O(shè)計(jì)和制造使其在電子皮膚、柔性傳感和人工智能中具有潛在的應(yīng)用前景。當(dāng)前,大多數(shù)電子器件是利用光刻、壓印技術(shù)和電子束在硅表面進(jìn)行制備。然而由于缺乏彎曲表面的加工工藝,要制備與復(fù)雜曲線表面(例如人體關(guān)節(jié))共形的電子器件尤為困難。面投影微立體光刻3D打印技術(shù)(PμSL)...
微納機(jī)器人在低雷諾數(shù)流體中可將能量轉(zhuǎn)化為有效運(yùn)動(dòng),因此在生物醫(yī)學(xué)領(lǐng)域具有巨大的應(yīng)用前景。近年來,磁性微納機(jī)器人作為一種有發(fā)展前景的靶向給藥平臺(tái)而受到了特別的關(guān)注。科研工作者設(shè)計(jì)了不同的磁性微納機(jī)器人用于高效遞送抗癌藥物至靶向腫瘤部位并取得了較好的效果。研究發(fā)現(xiàn),作為體內(nèi)給藥的平臺(tái)或載體,一方面,微納機(jī)器人的生物相容性是至關(guān)重要;另一方面,微納機(jī)器人的重構(gòu)對(duì)于其在復(fù)雜變化環(huán)境中高度靈活地完成給藥具有重要意義。然而,目前來說,微納機(jī)器人的研究在同時(shí)滿足這兩方面的要求上仍具有一定的...